Do extreme range estimators improve realized volatility forecasts? : evidence from G7 Stock Markets
Year of publication: |
2023
|
---|---|
Authors: | Korkusuz, Burak ; Kambouroudis, Dimos ; McMillan, David G. |
Published in: |
Finance research letters. - Amsterdam [u.a.] : Elsevier, ISSN 1544-6123, ZDB-ID 2181386-3. - Vol. 55.2023, 2, p. 1-7
|
Subject: | G7 stock markets | HAR-RV-X model | MCS | Realized volatility | Rolling methods | Volatility forecasting | Volatilität | Volatility | Prognoseverfahren | Forecasting model | Aktienmarkt | Stock market | Schätztheorie | Estimation theory | ARCH-Modell | ARCH model | Kapitaleinkommen | Capital income | Schätzung | Estimation |
-
Forecasting the U.S. stock volatility : an aligned jump index from G7 stock markets
Ma, Feng, (2019)
-
A multivariate Kernel approach to forecasting the variance covariance of stock market returns
Becker, Ralf, (2018)
-
Stock returns, quantile autocorrelation, and volatility forecasting
Zhao, Yixiu, (2021)
- More ...
-
Korkusuz, Burak, (2023)
-
Do Extreme Range Estimators Improve Realized Volatility Forecasts? Evidence from G7 Stock Markets
Korkusuz, Burak, (2023)
-
Do artificial neural networks provide improved volatility forecasts : evidence from Asian markets
Sahiner, Mehmet, (2023)
- More ...