Do High-Frequency Data Improve High-Dimensional Portfolio Allocations?
Year of publication: |
2013-03
|
---|---|
Authors: | Hautsch, Nikolaus ; Kyj, Lada M. ; Malec, Peter |
Institutions: | Sonderforschungsbereich 649: Ökonomisches Risiko, Wirtschaftswissenschaftliche Fakultät |
Subject: | portfolio optimization | spectral decomposition | regularization | blocked realized kernel | covariance prediction |
Extent: | application/pdf |
---|---|
Series: | |
Type of publication: | Book / Working Paper |
Notes: | Number SFB649DP2013-014 46 pages |
Classification: | G11 - Portfolio Choice ; G17 - Financial Forecasting ; c58 ; C14 - Semiparametric and Nonparametric Methods ; c38 |
Source: |
-
Do high-frequency data improve high-dimensional portfolio allocations?
Hautsch, Nikolaus, (2013)
-
Do high-frequency data improve high-dimensional portfolio allocations?
Hautsch, Nikolaus, (2013)
-
The merit of high-frequency data in portfolio allocation
Hautsch, Nikolaus, (2011)
- More ...
-
The Merit of High-Frequency Data in Portfolio Allocation
Hautsch, Nikolaus, (2011)
-
A blocking and regularization approach to high dimensional realized covariance estimation
Hautsch, Nikolaus, (2009)
-
Capturing the Zero: A New Class of Zero-Augmented Distributions and Multiplicative Error Processes
Hautsch, Nikolaus, (2010)
- More ...