A 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2~{\times }~2$$\end{document} random switching model and its dual risk model
Year of publication: |
2021
|
---|---|
Authors: | Behme, Anita ; Strietzel, Philipp Lukas |
Published in: |
Queueing Systems. - New York, NY : Springer US, ISSN 1572-9443. - Vol. 99.2021, 1-2, p. 27-64
|
Publisher: |
New York, NY : Springer US |
Subject: | Bipartite network | Bivariate compound Poisson process | Hitting probability | Coupled M/G/1-queues | Random switch | Regular variation | Ruin theory | Queueing theory |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Article |
Language: | English |
Other identifiers: | 10.1007/s11134-021-09697-9 [DOI] |
Classification: | k25 ; C11 - Bayesian Analysis ; G10 - General Financial Markets. General ; g05 |
Source: |
-
Feder-Sempach, Ewa, (2022)
-
How important are financial frictions in the US and the Euro area
Queijo von Heideken, Virginia, (2008)
-
Global demand and supply sentiment: Evidence from earnings calls
Taskin, Temel, (2023)
- More ...
-
Optimal dividends for a two-dimensional risk model with simultaneous ruin of both branches
Strietzel, Philipp Lukas, (2022)
-
Superposition of COGARCH processes
Behme, Anita, (2015)
-
Multivariate generalized Ornstein–Uhlenbeck processes
Behme, Anita, (2012)
- More ...