Does the choice of realized covariance measures empirically matter? : a Bayesian density prediction approach
Year of publication: |
2021
|
---|---|
Authors: | Jin, Xin ; Liu, Jia ; Yang, Qiao |
Published in: |
Econometrics : open access journal. - Basel : MDPI, ISSN 2225-1146, ZDB-ID 2717594-7. - Vol. 9.2021, 4, Art.-No. 45, p. 1-22
|
Subject: | density forecast | forecast comparison | high-frequency data | realized covariance | Prognoseverfahren | Forecasting model | Korrelation | Correlation | Statistische Verteilung | Statistical distribution | Volatilität | Volatility | Bayes-Statistik | Bayesian inference | Varianzanalyse | Analysis of variance | Schätzung | Estimation | Theorie | Theory | Börsenkurs | Share price |
-
A Bayesian high-frequency estimator of the multivariate covariance of noisy and asynchronous returns
Peluso, Stefano, (2015)
-
Bayesian nonparametric covariance estimation with noisy and nonsynchronous asset prices
Liu, Jia, (2021)
-
Liao, Yin, (2019)
- More ...
-
Jin, Xin, (2021)
-
Bayesian Parametric and Semiparametric Factor Models for Large Realized Covariance Matrices
Jin, Xin, (2017)
-
Bayesian parametric and semiparametric factor models for large realized covariance matrices
Jin, Xin, (2019)
- More ...