Double Deep Q-Learning for optimal execution
Year of publication: |
2021
|
---|---|
Authors: | Ning, Brian ; Lin, Franco Ho Ting ; Jaimungal, Sebastian |
Subject: | algorithmic trading | DDQN | optimal execution | reinforcement learning | Theorie | Theory | Elektronisches Handelssystem | Electronic trading | Lernprozess | Learning process | Wertpapierhandel | Securities trading | Algorithmus | Algorithm | Lernen | Learning | Mathematische Optimierung | Mathematical programming |
-
A comparison among Reinforcement Learning algorithms in financial trading systems
Corazza, Marco, (2019)
-
Risk-Averse Reinforcement Learning for Algorithmic Trading
Shen, Yun, (2014)
-
Algorithmic Trading with Learning
Cartea, Álvaro, (2015)
- More ...
-
Deep Q-learning for Nash equilibria : Nash-DQN
Casgrain, Philippe, (2022)
-
Option Pricing using Fourier Space Time-stepping Framework
Surkov, Vladimir, (2009)
-
Utility Indifference Pricing of Credit Instruments
Sigloch, Georg, (2009)
- More ...