Double machine learning for treatment and causal parameters
Year of publication: |
July, 2016
|
---|---|
Authors: | Chernozhukov, Victor ; Chetverikov, Denis ; Demirer, Mert ; Duflo, Esther ; Hansen, Christian Bailey ; Newey, Whitney K. |
Publisher: |
London : Cemmap, Centre for Microdata Methods and Practice, The Institute for Fiscal Studies, Department of Economics, UCL |
Subject: | Neyman | Orthogonalization | cross-fit | double machine learning | debiased machine learning | orthogonal score | efficient score | post-machine-learning and post-regularization inference | random forest | lasso | deep learning | neural nets | boosted trees | efficiency | optimality | Künstliche Intelligenz | Artificial intelligence | Neuronale Netze | Neural networks | Theorie | Theory | Kausalanalyse | Causality analysis | Lernprozess | Learning process | Prognoseverfahren | Forecasting model | Ökonometrie | Econometrics | Lernen | Learning |
-
Double machine learning for treatment and causal parameters
Chernozhukov, Victor, (2016)
-
Visual saliency modeling with deep learning : a comprehensive review
Abraham, Shilpa Elsa, (2023)
-
Deep learning classification : modeling discrete labor choice
Maliar, Lilia, (2022)
- More ...
-
Double/debiased machine learning for treatment and structural parameters
Chernozhukov, Victor, (2017)
-
Double/debiased/Neyman machine learning of treatment effects
Chernozhukov, Victor, (2017)
-
Double/debiased machine learning for treatment and structural parameters
Chernozhukov, Victor, (2017)
- More ...