Dynamically forecasting airline departure delay probability distributions for individual flights using supervised learning
| Year of publication: |
2025
|
|---|---|
| Authors: | Beltman, Maarten ; Ribeiro, Marta ; Wilde, Jasper de ; Sun, Junzi |
| Published in: |
Journal of air transport management : a new international journal of research, policy and practice. - Amsterdam [u.a.] : Elsevier Science, ZDB-ID 2027741-6. - Vol. 126.2025, Art.-No. 102788, p. 1-21
|
| Subject: | CatBoost | Deep Neural Networks | Departure Delay | Random Forest | Supervised learning | Neuronale Netze | Neural networks | Theorie | Theory | Lernprozess | Learning process | Prognoseverfahren | Forecasting model | Fluggesellschaft | Airline | Wahrscheinlichkeitsrechnung | Probability theory | Lernen | Learning | Linienverkehr | Scheduled transport | Luftverkehr | Air transport |
-
Transfer learning to scale deep Q networks in the context of airline pricing
Nataraj, Sharath, (2025)
-
Asset return prediction via machine learning
Zhang, Liangliang, (2019)
-
Predicting land prices and measuring uncertainty by combining supervised and unsupervised learning
Lee, Changro, (2021)
- More ...
-
ONTWIKKELINGEN IN DE WONINGBOUW IN MOSKOU
Eegerdingk, Sjoerd, (1995)
-
Deep reinforcement learning approach for real-time airport gate assignment
Li, Haonan, (2025)
-
Boeri, Tito, (2010)
- More ...