Effective Video Shot Boundary Detection and Keyframe Selection using Soft Computing Techniques
The amount of video data generated and made publicly available has been tremendously increased in today's digital era. Analyzing these huge video repositories require effective and efficient content-based video analysis systems. Shot boundary detection and Keyframe extraction are the two major tasks in video analysis. In this direction, a method for detecting abrupt shot boundaries and extracting representative keyframe from each video shot is proposed. These objectives are achieved by incorporating the concepts of fuzzy sets and intuitionistic fuzzy sets. Shot boundaries are detected using coefficient of correlation on fuzzified frames. Further, probabilistic entropy measures are computed to extract the keyframe within fuzzified frames of a shot. The keyframe representative of a shot is the frame with highest entropy value. To show the efficacy of the proposed methods two benchmark datasets are used (TRECVID and Open Video Project). The proposed methods outperform when compared with some of state-of-the-art shot boundary detection and keyframe extraction methods.
Year of publication: |
2018
|
---|---|
Authors: | Rashmi B S ; Nagendraswamy H S |
Published in: |
International Journal of Computer Vision and Image Processing (IJCVIP). - IGI Global, ISSN 2155-6989, ZDB-ID 2703057-X. - Vol. 8.2018, 2 (01.04.), p. 27-48
|
Publisher: |
IGI Global |
Subject: | Correlation Coefficient | Entropy | Fuzzy set | Intuitionistic fuzzy set | Keyframe extraction | Shot boundary detection |
Saved in:
Saved in favorites
Similar items by subject
-
Gu, Lingchen, (2017)
-
Bajaj, Jyoti, (2023)
-
AN INTUITIONISTIC FUZZY GROUP DECISION-MAKING APPROACH BASED ON ENTROPY AND SIMILARITY MEASURES
WEI, CUIPING, (2011)
- More ...