EFFICIENCY BOUNDS FOR SEMIPARAMETRIC ESTIMATION OF INVERSE CONDITIONAL-DENSITY-WEIGHTED FUNCTIONS
Consider the unconditional moment restriction E[<bold>m</bold>(<bold>y</bold>, <italic>υ</italic>, <bold>w</bold>; <bold>π</bold><sub>0</sub>)/<italic>f</italic><sub>null</sub> (<italic>υ</italic>|<bold>w</bold>) −<bold>s</bold> (<bold>w</bold>; <bold>π</bold><sub>0</sub>)] = 0, where <bold>m</bold>(·) and <bold>s</bold>(·) are known vector-valued functions of data (<bold>y</bold><sup>┬</sup>, <italic>υ</italic>, <bold>w</bold><sup>┬</sup>)<sup>┬</sup>. The smallest asymptotic variance that <inline-graphic>null</inline-graphic>-consistent regular estimators of <bold>null</bold><sub>0</sub> can have is calculated when <italic>f</italic><sub>null</sub>(·) is only known to be a bounded, continuous, nonzero conditional density function. Our results show that “plug-in” kernel-based estimators of <bold>null</bold><sub>0</sub> constructed from this type of moment restriction, such as Lewbel (1998, <italic>Econometrica</italic> 66, 105–121) and Lewbel (2007, <italic>Journal of Econometrics</italic> 141, 777–806), are semiparametric efficient.
Year of publication: |
2009
|
---|---|
Authors: | Jacho-Chávez, David T. |
Published in: |
Econometric Theory. - Cambridge University Press. - Vol. 25.2009, 03, p. 847-855
|
Publisher: |
Cambridge University Press |
Description of contents: | Abstract [journals.cambridge.org] |
Saved in:
Saved in favorites
Similar items by person
-
Efficiency bounds for semiparametric estimation of inverse conditional-density-weighted functions
Jacho-Chávez, David T., (2009)
-
On the evolution of the United Kingdom: Price distributions
Chu, Ba, (2018)
-
Tail Risk in a Retail Payments System
Sabetti, Leonard, (2018)
- More ...