Efficient and sparse neural networks by pruning weights in a multiobjective learning approach
| Year of publication: |
2022
|
|---|---|
| Authors: | Reiners, Malena ; Klamroth, Kathrin ; Heldmann, Fabian ; Stiglmayr, Michael |
| Published in: |
Computers & operations research : and their applications to problems of world concern ; an international journal. - Oxford [u.a.] : Elsevier, ISSN 0305-0548, ZDB-ID 194012-0. - Vol. 141.2022, p. 1-16
|
| Subject: | -regularization | Automated machine learning | Multiobjective learning | Stochastic multi-gradient descent | Unstructured pruning | Neuronale Netze | Neural networks | Künstliche Intelligenz | Artificial intelligence | Theorie | Theory | Lernprozess | Learning process | Multikriterielle Entscheidungsanalyse | Multi-criteria analysis | Lernen | Learning | Mathematische Optimierung | Mathematical programming | Prognoseverfahren | Forecasting model |
-
Deep learning, predictability, and optimal portfolio returns
Babiak, Mykola, (2020)
-
Predictive market making via machine learning
Haider, Abbas, (2022)
-
Deep learning classification : modeling discrete labor choice
Maliar, Lilia, (2022)
- More ...
-
A tight formulation for the dial-a-ride problem
Gaul, Daniela, (2025)
-
Event-based MILP models for ridepooling applications
Gaul, Daniela, (2022)
-
On the computational complexity of ordinal multi-objective unconstrained combinatorial optimization
Figueira, José Rui, (2025)
- More ...