Electricity price fundamentals in hydrothermal power generation markets using machine learning and quantile regression analysis
Year of publication: |
2021
|
---|---|
Authors: | Oviedo-Gómez, Andrés ; Londoño-Hernández, Sandra Milena ; Manotas-Duque, Diego Fernando |
Published in: |
International Journal of Energy Economics and Policy : IJEEP. - Mersin : EconJournals, ISSN 2146-4553, ZDB-ID 2632577-9. - Vol. 11.2021, 5, p. 66-77
|
Subject: | electricity prices | hydrothermal power generation markets | machine learning | quantile regression | Gaussian process regression | Strompreis | Electricity price | Regressionsanalyse | Regression analysis | Künstliche Intelligenz | Artificial intelligence | Elektrizitätswirtschaft | Electric power industry | Prognoseverfahren | Forecasting model |
-
Pan, Wenchao, (2024)
-
Distributional neural networks for electricity price forecasting
Marcjasz, Grzegorz, (2023)
-
High-dimensional mixed-frequency iv regression
Babii, Andrii, (2022)
- More ...
-
Oviedo-Gómez, Andrés, (2025)
-
Directional spillover of fossil fuels prices on a hydrothermal power generation market
Oviedo-Gómez, Andrés, (2023)
-
Mining and energy commodity price effects on Colombian economy
Oviedo-Gómez, Andrés, (2020)
- More ...