Elevating theoretical insight and predictive accuracy in business research : combining PLS-SEM and selected machine learning algorithms
| Year of publication: |
2024
|
|---|---|
| Authors: | Richter, Nicole Franziska ; Tudoran, Ana Alina |
| Published in: |
Journal of business research : JBR. - New York, NY : Elsevier, ISSN 0148-2963, ZDB-ID 2013438-1. - Vol. 173.2024, Art.-No. 114453, p. 1-18
|
| Subject: | Machine learning (ML) | Method triangulation | Partial least squares-structural equation modeling (PLS-SEM) | Prediction | Unified theory of acceptance and use of technology (UTAUT) | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Theorie | Theory | Algorithmus | Algorithm | Innovationsakzeptanz | Innovation adoption |
-
Predict stock prices using supervised learning algorithms and particle swarm optimization algorithm
Bazrkar, Mohammad Javad, (2023)
-
Asset return prediction via machine learning
Zhang, Liangliang, (2019)
-
Samadianfard, Saeed, (2020)
- More ...
-
Global virtual teamwork : reflections on the current and future research landscape
Zheng, Fang, (2025)
-
Schlaegel, Christopher, (2021)
-
Schlaegel, Christopher, (2021)
- More ...