An emotional learning-neuro-fuzzy inference approach for optimum training and forecasting of gas consumption estimation models with cognitive data
Year of publication: |
2015
|
---|---|
Authors: | Azadeh, Mohammad Ali ; Asadzadeh, Seyed Mohammad ; Mirseraji, Gholam Hosein ; Saberi, Mortezza |
Published in: |
Technological forecasting & social change : an international journal. - Amsterdam : Elsevier, ISSN 0040-1625, ZDB-ID 280700-2. - Vol. 91.2015, p. 47-63
|
Subject: | Emotional learning fuzzy inference system (ELFIS) | Natural gas demand | Adaptive neuro-fuzzy inference system (ANFIS) | Conventional regression | Artificial neural network (ANN) | Analysis of variance (ANOVA) | Optimization | Neuronale Netze | Neural networks | Fuzzy-Set-Theorie | Fuzzy sets | Schätztheorie | Estimation theory | Emotion | Erdgas | Natural gas | Induktive Statistik | Statistical inference | Prognoseverfahren | Forecasting model | Regressionsanalyse | Regression analysis | Schätzung | Estimation | Kognition | Cognition | Varianzanalyse | Analysis of variance | Lernprozess | Learning process |
-
Ayed, Nadia, (2024)
-
Azadeh, Mohammad Ali, (2014)
-
Machine learning advances for time series forecasting
Masini, Ricardo P., (2020)
- More ...
-
Azadeh, Mohammad Ali, (2013)
-
Azadeh, Mohammad Ali, (2014)
-
An integrated framework for supplier evaluation and order allocation in a non-crisp environment
Azadeh, Mohammad Ali, (2010)
- More ...