End-to-end supply chain resilience management using deep learning, survival analysis, and explainable artificial intelligence
| Year of publication: |
2025
|
|---|---|
| Authors: | Li, Xingyu ; Krivtsov, Vasiliy ; Pan, Chaoye ; Nassehi, Aydin ; Gao, Robert X. ; Ivanov, Dmitry |
| Published in: |
International journal of production research. - London [u.a.] : Taylor & Francis, ISSN 1366-588X, ZDB-ID 1485085-0. - Vol. 63.2025, 3, p. 1174-1202
|
| Subject: | Supply chain resilience | supply chain risk management | end-to-end learning | deep learning | survival analysis | explainable AI | Lieferkette | Supply chain | Risikomanagement | Risk management | Künstliche Intelligenz | Artificial intelligence | Lernende Organisation | Learning organization |
-
Disruption detection for a cognitive digital supply chain twin using hybrid deep learning
Ashraf, Mahmoud, (2024)
-
Dai, Jing, (2025)
-
A machine learning approach for enhancing supply chain visibility with graph-based learning
Zheng, Ge, (2025)
- More ...
-
Ivanov, Dmitry, (2025)
-
Ivanov, Dmitry, (2025)
-
Modellierung von Unternehmensnetzwerken unter Berücksichtigung von Unsicherheitsfaktoren
Ivanov, Dmitry, (2006)
- More ...