Enhancing forecasting accuracy in commodity and financial markets : insights from GARCH and SVR Models
| Year of publication: |
2024
|
|---|---|
| Authors: | Ampountolas, Apostolos |
| Published in: |
International Journal of Financial Studies : open access journal. - Basel : MDPI, ISSN 2227-7072, ZDB-ID 2704235-2. - Vol. 12.2024, 3, Art.-No. 59, p. 1-20
|
| Subject: | commodity markets | volatility | forecasting | FIGARCH | SVR | volatility forecast | cocoafutures | gold futures | GARCH models | machine learning | Volatilität | Volatility | ARCH-Modell | ARCH model | Prognoseverfahren | Forecasting model | Gold | Künstliche Intelligenz | Artificial intelligence | Rohstoffmarkt | Commodity market | Finanzmarkt | Financial market | Rohstoffderivat | Commodity derivative | Prognose | Forecast | Warenbörse | Commodity exchange |
-
Tang, Yusui, (2023)
-
Uncover the response of the US grain commodity market on El Niño-Southern Oscillation
Su, Yuandong, (2022)
-
Forecasting volatility in commodity markets with long-memory models
Alfeus, Mesias, (2022)
- More ...
-
Addressing complex seasonal patterns in hotel forecasting : a comparative study
Ampountolas, Apostolos, (2025)
-
Ampountolas, Apostolos, (2022)
-
Postcrisis REIT performance using financial ratios : a DEA approach
Ampountolas, Apostolos, (2022)
- More ...