Enhancing supply chain resilience : RIME-clustering and ensemble deep learning strategies for late delivery risk prediction
Year of publication: |
2024
|
---|---|
Authors: | Douaioui, Kaoutar ; Oucheikh, Rachid ; Mabrouki, Charif |
Published in: |
LogForum : elektroniczne czasopismo naukowe z dziedziny logistyki. - Poznan : Wyzsza Szkola Logistyki, ISSN 1734-459X, ZDB-ID 2212048-8. - Vol. 20.2024, 1, Art.-No. 5, p. 55-71
|
Subject: | Artificial Neural Networks (ANNs) | Late Delivery Risk | Supply Chain Management | Clustering | Multiclassification | Deep Learning Models | RIME Optimization Algorithm | Lieferkette | Supply chain | Neuronale Netze | Neural networks | Künstliche Intelligenz | Artificial intelligence | Risikomanagement | Risk management | Theorie | Theory | Algorithmus | Algorithm | Lernprozess | Learning process |
-
Asset return prediction via machine learning
Zhang, Liangliang, (2019)
-
Evolving hybrid deep neural network models for end-to-end inventory ordering decisions
Moraes, Thais de Castro, (2023)
-
Arishi, Ali, (2023)
- More ...
-
Malhouni, Youssef, (2023)
-
Rolling cargo management using a deep reinforcement learning approach
Oucheikh, Rachid, (2021)
-
Rolling cargo management using a deep reinforcement learning approach
Oucheikh, Rachid, (2021)
- More ...