Ensembled LSTM with walk forward optimization in algorithmic trading
Year of publication: |
2023
|
---|---|
Authors: | Chojnacki, Karol ; Ślepaczuk, Robert |
Publisher: |
Warsaw : University of Warsaw, Faculty of Economic Sciences |
Subject: | Algorithmic Investment Strategies | Machine Learning | Recurrent Neural Networks | Long Short-Term Memory | XGBoost | Walk Forward Optimization | Trading algorithms | Technical Analysis Indicators | Algorithmus | Algorithm | Neuronale Netze | Neural networks | Finanzanalyse | Financial analysis | Theorie | Theory | Künstliche Intelligenz | Artificial intelligence | Elektronisches Handelssystem | Electronic trading | Portfolio-Management | Portfolio selection | Mathematische Optimierung | Mathematical programming | Prognoseverfahren | Forecasting model | Anlageverhalten | Behavioural finance |
-
Application of machine learning in algorithmic investment strategies on global stock markets
Grudniewicz, Jan, (2023)
-
Michańków, Jakub, (2023)
-
Michańków, Jakub, (2023)
- More ...
-
Investment strategies that beat the market: What can we squeeze from the market?
Ślepaczuk, Robert, (2018)
-
Sakowski, Paweł, (2016)
-
Efficiency of the Market of Derivative Instruments Listed on the Warsaw Stock Exchange
Ślepaczuk, Robert, (2004)
- More ...