Error-Rate and Decision-Theoretic Methods of Multiple Testing: Which Genes Have High Objective Probabilities of Differential Expression?
Given a multiple testing situation, the null hypotheses that appear to have sufficiently low probabilities of truth may be rejected using a simple, nonparametric method based on decision theory. This applies not only to posterior levels of belief, but also to conditional probabilities in the sense of relative frequencies, as seen from their equality to local false discovery rates (dFDRs). This approach neither requires the estimation of probability densities, nor of their ratios. Decision theory can also inform the selection of false discovery rate weights. An application to gene expression microarrays is presented with a discussion of the applicability of the assumption of "clumpy dependence."
Year of publication: |
2004
|
---|---|
Authors: | Bickel David R. |
Published in: |
Statistical Applications in Genetics and Molecular Biology. - De Gruyter, ISSN 1544-6115. - Vol. 3.2004, 1, p. 1-22
|
Publisher: |
De Gruyter |
Saved in:
Saved in favorites
Similar items by person
-
Bickel David R., (2015)
-
Bickel David R., (2013)
-
Estimators of the local false discovery rate designed for small numbers of tests
Marta, Padilla, (2012)
- More ...