Estimating affine multifactor term structure models using closed-form likelihood expansions
We develop and implement a technique for closed-form maximum likelihood estimation (MLE) of multifactor affine yield models. We derive closed-form approximations to likelihoods for nine Dai and Singleton (2000) affine models. Simulations show our technique very accurately approximates true (but infeasible) MLE. Using US Treasury data, we estimate nine affine yield models with different market price of risk specifications. MLE allows non-nested model comparison using likelihood ratio tests; the preferred model depends on the market price of risk. Estimation with simulated and real data suggests our technique is much closer to true MLE than Euler and quasi-maximum likelihood (QML) methods.
Year of publication: |
2010
|
---|---|
Authors: | Aït-Sahalia, Yacine ; Kimmel, Robert L. |
Published in: |
Journal of Financial Economics. - Elsevier, ISSN 0304-405X. - Vol. 98.2010, 1, p. 113-144
|
Publisher: |
Elsevier |
Keywords: | Term structure Multifactor Interest rates Affine Closed-form maximum-likelihood |
Saved in:
Saved in favorites
Similar items by person
-
Maximum likelihood estimation of stochastic volatility models
Aït-Sahalia, Yacine, (2004)
-
Estimating affine multifactor term structure models using closed-form likelihood expansions
Aït-Sahalia, Yacine, (2010)
-
Maximum likelihood estimation of stochastic volatility models
Aït-Sahalia, Yacine, (2007)
- More ...