Estimating covariance matrices using estimating functions in nonparametric and semiparametric regression
We use ideas from estimating function theory to derive new, simply computed consistent covariance matrix estimates in nonparametric regression and in a class of semiparametric problems. Unlike other estimates in the literature, ours do not require auxiliary or additional nonparametric regressions.
Year of publication: |
1997
|
---|---|
Authors: | Carroll, Raymond J. ; Iturria, Stephen J. ; Gutierrez, Roberto G. |
Institutions: | Sonderforschungsbereich 373, Quantifikation und Simulation ökonomischer Prozesse, Wirtschaftswissenschaftliche Fakultät |
Subject: | Nonparametric regression | Estimating Equations | Kernel regression | Plug-in Semiparametrics | Smoothing |
Saved in: