Estimating DSGE models with unknown data persistence
Recent empirical literature shows that key macro variables such as GDP and productivity display long memory dynamics. For DSGE models, we propose a �Generalized� Kalman Filter to deal effectively with this problem: our method connects to and innovates upon data-filtering techniques already used in the DSGE literature. We show our method produces more plausible estimates of the deep parameters as well as more accurate out-of-sample forecasts of macroeconomic data.