Estimating dynamic equilibrium economies: linear versus nonlinear likelihood
This paper compares two methods for undertaking likelihood-based inference in dynamic equilibrium economies: a sequential Monte Carlo filter proposed by Fernández-Villaverde and Rubio-Ramírez (2004) and the Kalman filter. The sequential Monte Carlo filter exploits the nonlinear structure of the economy and evaluates the likelihood function of the model by simulation methods. The Kalman filter estimates a linearization of the economy around the steady state. The authors report two main results. First, both for simulated and for real data, the sequential Monte Carlo filter delivers a substantially better fit of the model to the data as measured by the marginal likelihood. This is true even for a nearly linear case. Second, the differences in terms of point estimates, even if relatively small in absolute values, have important effects on the moments of the model. The authors conclude that the nonlinear filter is a superior procedure for taking models to the data.
Year of publication: |
2004
|
---|---|
Authors: | Fernández-Villaverde, Jesús ; Rubio-Ramírez, Juan Francisco |
Institutions: | Federal Reserve Bank of Atlanta |
Saved in:
Saved in favorites
Similar items by person
-
A, B, C’s, (and D’s) for understanding VARs
Fernández-Villaverde, Jesús, (2005)
-
On the solution of the growth model with investment-specific technological change
Fernández-Villaverde, Jesús, (2004)
-
Estimating nonlinear dynamic equilibrium economies: a likelihood approach
Fernández-Villaverde, Jesús, (2004)
- More ...