Estimating fixed effects : perfect prediction and bias in binary response panel models, with an application to the hospital readmissions reduction program
Year of publication: |
November 2017
|
---|---|
Authors: | Kunz, Johannes ; Staub, Kevin E. ; Winkelmann, Rainer |
Publisher: |
Bonn, Germany : IZA |
Subject: | perfect prediction | bias reduction | penalised likelihood | logit | probit | Affordable Care Act | Krankenhaus | Hospital | Systematischer Fehler | Bias | Schätztheorie | Estimation theory | Panel | Panel study | Prognoseverfahren | Forecasting model | Logit-Modell | Logit model | Probit-Modell | Probit model |
Extent: | 1 Online-Ressource (circa 46 Seiten) Illustrationen |
---|---|
Series: | Discussion paper series / IZA. - Bonn : IZA, ZDB-ID 2120053-1. - Vol. no. 11182 |
Type of publication: | Book / Working Paper |
Type of publication (narrower categories): | Arbeitspapier ; Working Paper ; Graue Literatur ; Non-commercial literature |
Language: | English |
Other identifiers: | hdl:10419/174092 [Handle] |
Classification: | C23 - Models with Panel Data ; C25 - Discrete Regression and Qualitative Choice Models ; I18 - Government Policy; Regulation; Public Health |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Kunz, Johannes S., (2017)
-
Kunz, Johannes, (2017)
-
Kunz, Johannes, (2017)
- More ...
-
Predicting individual effects in fixed effects panel probit models
Kunz, Johannes, (2021)
-
Predicting Fixed Effects in Panel Probit Models
Kunz, Johannes, (2019)
-
Kunz, Johannes, (2020)
- More ...