Estimating (Markov-Switching) VAR models without gibbs sampling : a sequential Monte Carlo approach
Year of publication: |
2014
|
---|---|
Authors: | Bognanni, Mark ; Herbst, Edward P. |
Publisher: |
Cleveland, Ohio : Federal Reserve Bank of Cleveland |
Subject: | Vector Autoregressions | Sequential Monte Carlo | Regime-Switching Models | Bayesian Analysis | Monte-Carlo-Simulation | Monte Carlo simulation | VAR-Modell | VAR model | Markov-Kette | Markov chain | Bayes-Statistik | Bayesian inference | Schätztheorie | Estimation theory | Zeitreihenanalyse | Time series analysis | Schätzung | Estimation |
-
The time-varying effects of permanent and transistory shocks to real output
Keating, John William, (2015)
-
Scalable inference for a full multivariate stochastic volatility model
Dellaportas, Petros, (2023)
-
Data-driven particle filters for Particle Markov Chain Monte Carlo
Leung, Patrick, (2016)
- More ...
-
Estimating (Markov-switching) VAR models without Gibbs sampling : a sequential Monte Carlo approach
Bognanni, Mark, (2015)
-
Estimating (Markov-Switching) VAR Models Without Gibbs Sampling : A Sequential Monte Carlo Approach
Bognanni, Mark, (2015)
-
Estimating (Markov-Switching) VAR Models Without Gibbs Sampling : A Sequential Monte Carlo Approach
Bognanni, Mark, (2015)
- More ...