Estimating the parameters of stochastic volatility models using option price data
Year of publication: |
2015
|
---|---|
Authors: | Hurn, Stan ; Lindsay, Kenneth A. ; McClelland, Andrew |
Published in: |
Journal of business & economic statistics : JBES ; a publication of the American Statistical Association. - Alexandria, Va. : American Statistical Association, ISSN 0735-0015, ZDB-ID 876122-X. - Vol. 33.2015, 4, p. 579-594
|
Subject: | Jumps | Maximum likelihood | Particle filter | Risk premia | Stochastic volatility | Stochastischer Prozess | Stochastic process | Volatilität | Volatility | Maximum-Likelihood-Schätzung | Maximum likelihood estimation | Schätztheorie | Estimation theory | Schätzung | Estimation | Optionsgeschäft | Option trading | Optionspreistheorie | Option pricing theory | Risikoprämie | Risk premium | Monte-Carlo-Simulation | Monte Carlo simulation |
-
Equity index variance : evidence from flexible parametric jump-diffusion models
Kaeck, Andreas, (2017)
-
Parametric inference and dynamic state recovery from option panels
Andersen, Torben, (2015)
-
A time-varying jump tail risk measure using high-frequency options data
Ubukata, Masato, (2022)
- More ...
-
A quasi-maximum likelihood method for estimating the parameters of multivariate diffusions
Hurn, Stan, (2010)
-
A quasi-maximum likelihood method for estimating the parameters of multivariate diffusions
Hurn, Stan, (2013)
-
On the efficacy of Fourier series approximations for pricing European and digital options
Hurn, Stan, (2013)
- More ...