Estimation of a Mean Vector in a Two-Sample Problem
We consider the problem of estimating a p-dimensional vector [mu]1 based on independent variables X1, X2, and U, where X1 is Np([mu]1, [sigma]2[Sigma]1), X2 is Np([mu]2, [sigma]2[Sigma]2), and U is [sigma]2[chi]2n ([Sigma]1 and [Sigma]2 are known). A family of minimax estimators is proposed. Some of these estimators can be obtained via Bayesian arguments as well. Comparisons between our results and the one of Ghosh and Sinha (1988, J. Multivariate Anal.27 206-207) are presented.