Estimation of processing time using machine learning and real factory data for optimization of parallel machine scheduling problem
Year of publication: |
2021
|
---|---|
Authors: | Yamashiro, Hirochika ; Nonaka, Hirofumi |
Published in: |
Operations research perspectives. - Amsterdam [u.a.] : Elsevier, ISSN 2214-7160, ZDB-ID 2821932-6. - Vol. 8.2021, Art.-No. 100196, p. 1-9
|
Subject: | Machine learning | Gaussian process regression | Gradient boosted decision trees | Artificial neural networks | Identical parallel machine scheduling | Operations research | Künstliche Intelligenz | Artificial intelligence | Scheduling-Verfahren | Scheduling problem | Neuronale Netze | Neural networks | Theorie | Theory | Algorithmus | Algorithm | Operations Research | Produktionssteuerung | Production control | Prognoseverfahren | Forecasting model | Durchlaufzeit | Lead time | Entscheidungsbaum | Decision tree |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.1016/j.orp.2021.100196 [DOI] hdl:10419/246451 [Handle] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Bouška, Michal, (2023)
-
Minimization of maximum lateness on parallel machines with a single server and job release dates
Elidrissi, Abdelhak, (2024)
-
Single-machine scheduling with job-dependent machine deterioration
Luo, Wenchang, (2019)
- More ...
-
Yamashiro, Hirochika, (2021)
-
Alemán Carreón, Elisa Claire, (2021)
- More ...