Evaluating accession decisions in customs unions : a dynamic machine learning approach
Year of publication: |
2024
|
---|---|
Authors: | Naeher, Dominik ; De Lombaerde, Philippe ; Saber, Takfarinas |
Published in: |
International economics and economic policy. - Berlin : Springer, ISSN 1612-4812, ZDB-ID 2144827-9. - Vol. 22.2024, 1, Art.-No. 2, p. 1-27
|
Subject: | Accession | Customs union | Dynamic clustering algorithm | Machine learning | Regional integration | Künstliche Intelligenz | Artificial intelligence | Zollunion | Algorithmus | Algorithm | Theorie | Theory | Regionale Wirtschaftsintegration | Regional economic integration |
-
Evaluating accession decisions in customs unions : a dynamic machine learning approach
Naeher, Dominik, (2023)
-
Regional integration clusters and optimum customs unions : a machine-learning approach
De Lombaerde, Philippe, (2021)
-
Regional integration clusters and optimum customs unions : a machine learning approach
De Lombaerde, Philippe, (2021)
- More ...
-
On the optimal size and composition of customs unions : an evolutionary approach
Saber, Takfarinas, (2023)
-
Regional integration clusters and optimum customs unions : a machine-learning approach
De Lombaerde, Philippe, (2021)
-
Regional integration clusters and optimum customs unions : a machine learning approach
De Lombaerde, Philippe, (2021)
- More ...