EWT-SMOTE to improve default prediction performance in imbalanced data : analysis of Chinese data
Year of publication: |
2024
|
---|---|
Authors: | Zhou, Ying ; Lin, Xia ; Chi, Guotai ; Jin, Peng ; Li, Mengtong |
Published in: |
Journal of forecasting. - New York, NY : Wiley Interscience, ISSN 1099-131X, ZDB-ID 2001645-1. - Vol. 43.2024, 3, p. 615-643
|
Subject: | big data | default prediction | entropy weight TOPSIS | imbalanced data | SMOTE | Prognoseverfahren | Forecasting model | Big Data | Big data | China | Kreditrisiko | Credit risk | Entropie | Entropy | Data Mining | Data mining | Insolvenz | Insolvency | Kreditwürdigkeit | Credit rating |
-
Chi, Guotai, (2022)
-
Forecasting loan default in Europe with machine learning
Barbaglia, Luca, (2023)
-
Yuan, Kunpeng, (2022)
- More ...
-
Long-horizon predictions of credit default with inconsistent customers
Chi, Guotai, (2024)
-
Chi, Guotai, (2022)
-
Feature selection in credit risk modeling : an international evidence
Zhou, Ying, (2021)
- More ...