An experimental investigation to optimise injection moulding process parameters for plastic parts by using Taguchi method and multi-objective genetic algorithm
Year of publication: |
2019
|
---|---|
Authors: | Kumar, Deepak ; Dangayach, G. S. ; Rao, P. N. |
Published in: |
International journal of process management and benchmarking : IJPMB. - Olney : Inderscience, ISSN 1460-6739, ZDB-ID 2181571-9. - Vol. 9.2019, 1, p. 1-26
|
Subject: | injection moulding | process parameters | Taguchi method | multi-objective genetic algorithm | steady state experiments | modified linear graph | prediction | shrinkage | warpage and impact strength | Evolutionärer Algorithmus | Evolutionary algorithm | Multikriterielle Entscheidungsanalyse | Multi-criteria analysis | Experiment | Theorie | Theory |
-
Fuzzy multi-objective economic-statistical design of X-bar control chart
Ganguly, Abhijeet, (2019)
-
Allocation of order amongst available suppliers using multi-objective genetic algorithm
Shaikh, Azharuddin Sarfuddin, (2020)
-
Credit portfolio optimization : a multi-objective genetic algorithm approach
Wang, Zhi, (2022)
- More ...
-
Gupta, Sumit, (2018)
-
Patel, M. S., (1987)
-
Reliability-centred maintenance applied to power plant auxiliaries
Srikrishna, S., (1996)
- More ...