Explainable reinforcement learning in production control of job shop manufacturing system
Year of publication: |
2022
|
---|---|
Authors: | Kuhnle, Andreas ; May, Marvin Carl ; Schäfer, Louis ; Lanza, Gisela |
Published in: |
International journal of production research. - London [u.a.] : Taylor & Francis, ISSN 1366-588X, ZDB-ID 1485085-0. - Vol. 60.2022, 19, p. 5812-5834
|
Subject: | explainability | production control | reinforcement learning | semiconductor manufacturing | simulation | Produktionssteuerung | Production control | Produktionssystem | Manufacturing system | Simulation | Lernprozess | Learning process | Theorie | Theory | Lernen | Learning | Halbleiterindustrie | Semiconductor industry | Scheduling-Verfahren | Scheduling problem |
-
A global scheduling approach for cycle time control in complex manufacturing systems
Barhebwa-Mushamuka, Félicien, (2023)
-
Kim, Woo-sung, (2015)
-
Heger, Jens, (2023)
- More ...
-
Wurster, Marco, (2022)
-
Decision Experiments in the Learning Factory : A Proof of Concept
Ströhlein, Karoline, (2022)
-
Designing an adaptive production control system using reinforcement learning
Kuhnle, Andreas, (2020)
- More ...