Explainable subgradient tree boosting for prescriptive analytics in operations management
Year of publication: |
2024
|
---|---|
Authors: | Notz, Pascal Markus ; Pibernik, Richard |
Published in: |
European journal of operational research : EJOR. - Amsterdam [u.a.] : Elsevier, ISSN 0377-2217, ZDB-ID 1501061-2. - Vol. 312.2024, 3 (1.2.), p. 1119-1133
|
Subject: | Decision support systems | Explainability | Gradient boosting | Machine learning | Prescriptive analytics | Management-Informationssystem | Management information system | Künstliche Intelligenz | Artificial intelligence | Prozessmanagement | Business process management | Data Mining | Data mining |
-
A machine learning approach to improving dynamic decision making
Meyer, Georg, (2014)
-
Data-driven decision support for perishable goods
Huber, Jakob, (2019)
-
The use of predictive analytics in finance
Broby, Daniel, (2022)
- More ...
-
Prescriptive Analytics for Flexible Capacity Management
Notz, Pascal Markus, (2020)
-
Prescriptive analytics for a multi-shift staffing problem
Notz, Pascal Markus, (2023)
-
Prescriptive analytics for flexible capacity management
Notz, Pascal Markus, (2022)
- More ...