Exploring industry-distress effects on loan recovery : a double machine learning approach for quantiles
Year of publication: |
2023
|
---|---|
Authors: | Chuang, Hui-Ching ; Chen, Jau-er |
Published in: |
Econometrics : open access journal. - Basel : MDPI, ISSN 2225-1146, ZDB-ID 2717594-7. - Vol. 11.2023, 1, Art.-No. 6, p. 1-20
|
Subject: | double machine learning | lasso | loss given default | quantile regression | recentered influence function | Künstliche Intelligenz | Artificial intelligence | Regressionsanalyse | Regression analysis | Kreditrisiko | Credit risk | Prognoseverfahren | Forecasting model |
-
Revisiting SME default predictors : the Omega Score
Altman, Edward I., (2022)
-
Revisiting SME default predictors : the Omega Score
Altman, Edward I., (2022)
-
Opening the black box : quantile neural networks for loss given default prediction
Kellner, Ralf, (2022)
- More ...
-
Causal random forests model using instrumental variable quantile regression
Chen, Jau-er, (2019)
-
Debiased/double machine learning for instrumental variable quantile regressions
Chen, Jau-er, (2021)
-
Estimating and Testing Quantile Regression with Structural Changes
Chen, Jau-er, (2017)
- More ...