Exploring statistical arbitrage opportunities using machine learning strategy
Year of publication: |
2022
|
---|---|
Authors: | Zhan, Baoqiang ; Zhang, Shu ; Du, Helen S. ; Yang, Xiaoguang |
Published in: |
Computational economics. - Dordrecht [u.a.] : Springer Science + Business Media B.V., ISSN 1572-9974, ZDB-ID 1477445-8. - Vol. 60.2022, 3, p. 861-882
|
Subject: | Cointegration | Machine learning | Opportunities exploration | Statistical arbitrage | Künstliche Intelligenz | Artificial intelligence | Arbitrage | Kointegration | Theorie | Theory | Portfolio-Management | Portfolio selection | Prognoseverfahren | Forecasting model |
-
State-dependent stock selection in index tracking : a machine learning approach
Bradrania, Reza, (2022)
-
Separating the signal from the noise - financial machine learning for Twitter
Schnaubelt, Matthias, (2018)
-
Knoll, Julian, (2019)
- More ...
-
Star power : a quasi-natural experiment on how analyst status affects recommendation performance
Zhan, Baoqiang, (2024)
-
Zhang Shu, (1991)
-
Is China the price taker in soybean futures?
Liu, Bruce Jianhe, (2015)
- More ...