Failures of fairness in automation require a deeper understanding of human-ml augmentation
Year of publication: |
2021
|
---|---|
Authors: | Teodorescu, Mike H. M. ; Morse, Lily ; Awwad, Yazeed ; Kane, Gerald C. |
Published in: |
MIS quarterly. - Minneapolis, Minn : MISRC, ISSN 2162-9730, ZDB-ID 2068190-2. - Vol. 45.2021, 3, p. 1483-1500
|
Subject: | Fairness | machine learning | augmentation | automation | artificial intelligence | Künstliche Intelligenz | Artificial intelligence | Automatisierung | Automation | Gerechtigkeit | Justice |
-
An intergenerational justice approach to technological unemployment
Swanepoel, Danielle, (2023)
-
Engaged to a robot? : the role of AI in service
Huang, Ming-Hui, (2021)
-
The future of work : a research agenda
Dries, Nicky, (2025)
- More ...
-
A Framework for Fairer Machine Learning in Organizations
Morse, Lily, (2020)
-
Morse, Lily, (2022)
-
The Track One Pilot Program : Who benefits from prioritized patent examination?
Kuhn, Jeffrey M., (2020)
- More ...