Fast and accurate variational inference for models with many latent variables
Year of publication: |
2022
|
---|---|
Authors: | Loiza-Maya, Ruben ; Smith, Michael S. ; Nott, David J. ; Danaher, Peter J. |
Published in: |
Journal of econometrics. - Amsterdam [u.a.] : Elsevier, ISSN 0304-4076, ZDB-ID 184861-6. - Vol. 230.2022, 2, p. 339-362
|
Subject: | Latent variable models | Time-varying VAR with stochastic volatility | Large consumer panels | Sub-sampling variational inference | Stochastic gradient ascent | Theorie | Theory | Stochastischer Prozess | Stochastic process | Volatilität | Volatility | Schätzung | Estimation | VAR-Modell | VAR model | Induktive Statistik | Statistical inference |
-
Scalable inference for a full multivariate stochastic volatility model
Dellaportas, Petros, (2023)
-
Fast and Accurate Variational Inference for Large Bayesian Vars with Stochastic Volatility
Chan, Joshua, (2022)
-
Fast and Accurate Variational Inference for Large Bayesian VARs with Stochastic Volatility
Chan, Joshua, (2020)
- More ...
-
Advertising effectiveness for multiple retailer-brands in a multimedia and multichannel environment
Danaher, Peter J., (2020)
-
Real-time macroeconomic forecasting with a heteroscedastic inversion copula
Loiza-Maya, Ruben, (2020)
-
Exchange rates contagion in Latin America
Loiza-Maya, Ruben, (2014)
- More ...