Feature space reduction method for ultrahigh-dimensional, multiclass data: Random forest-based multiround screening (RFMS)
Year of publication: |
2023
|
---|---|
Authors: | Hanczár, Gergely ; Stippinger, Marcell ; Hanák, Dávid ; Kurbucz, Marcell Tamás ; Törteli, Olivér Máté ; Chripkó, Ágnes ; Somogyvári, Zoltán |
Publisher: |
Institute of Physics Publishing |
Subject: | Knowledge economy | innovation | Computer science |
Type of publication: | Article |
---|---|
Language: | English |
Notes: | Hanczár, Gergely, Stippinger, Marcell orcid:0000-0002-9954-8089 , Hanák, Dávid, Kurbucz, Marcell Tamás orcid:0000-0002-0121-6781 , Törteli, Olivér Máté, Chripkó, Ágnes orcid:0000-0002-2863-5257 and Somogyvári, Zoltán (2023) Feature space reduction method for ultrahigh-dimensional, multiclass data: Random forest-based multiround screening (RFMS). Machine Learning: Science and Technology, 4 (4). DOI https://doi.org/10.1088/2632-2153/ad020e |
Other identifiers: | 10.1088/2632-2153/ad020e [DOI] |
Source: | BASE |
-
A New Method of Improving the Azimuth in Mountainous Terrain by Skyline Matching
Nagy, Balázs, (2020)
-
AlShafeey, Mutaz, (2021)
-
A gépi tanulás módszereinek alkalmazása R-ben
Nyitrai, Tamás, (2021)
- More ...
-
Stippinger, Marcell, (2023)
-
Hierarchically organized minority games
Földy, Csaba, (2003)
-
Enhancing resilience of interdependent networks by healing
Stippinger, Marcell, (2014)
- More ...