Federated optimization under intermittent client availability
Year of publication: |
2024
|
---|---|
Authors: | Yan, Yikai ; Niu, Chaoyue ; Ding, Yucheng ; Zheng, Zhenzhe ; Tang, Shaojie ; Li, Qinya ; Wu, Fan ; Lyu, Chengfei ; Feng, Yanghe ; Chen, Guihai |
Published in: |
INFORMS journal on computing : JOC ; charting new directions in operations research and computer science ; a journal of the Institute for Operations Research and the Management Sciences. - Linthicum, Md. : INFORMS, ISSN 1526-5528, ZDB-ID 2004082-9. - Vol. 36.2024, 1, p. 185-202
|
Subject: | client availability | federated learning | nonconvex optimization | Theorie | Theory | Mathematische Optimierung | Mathematical programming | Föderalismus | Federalism |
-
Optimal policy computing for blockchain based smart contracts via federated learning
Dai, Wanyang, (2022)
-
Solving linear multiplicative programs via branch-and-bound : a computational experience
Cambini, Riccardo, (2023)
-
A new Lagrangian-based first-order method for nonconvex constrained optimization
Kim, Jong Gwang, (2023)
- More ...
-
Fast approximation algorithm for maximum lifetime aggregation trees in wireless sensor networks
Zhu, Xiaojun, (2016)
-
Dou, Wanchun, (2007)
-
Doulabi, Hossein Hashemi, (2016)
- More ...