Finding needles in haystacks: Multiple-imputation record linkage using machine learning
Year of publication: |
2022
|
---|---|
Authors: | Abowd, John M. ; Abramowitz, Joelle ; Levenstein, Margaret ; McCue, Kristin ; Patki, Dhiren ; Raghunathan, Trivellore ; Rodgers, Ann M. ; Shapiro, Matthew D. ; Zinsser, Dawn |
Publisher: |
Boston, MA : Federal Reserve Bank of Boston |
Subject: | Administrative data | machine learning | multiple imputation | probabilistic record linkage | survey data |
Series: | Working Papers ; 22-11 |
---|---|
Type of publication: | Book / Working Paper |
Type of publication (narrower categories): | Working Paper |
Language: | English |
Other identifiers: | 10.29412/res.wp.2022.11 [DOI] 1818354926 [GVK] hdl:10419/273032 [Handle] |
Classification: | C13 - Estimation ; c18 ; C81 - Methodology for Collecting, Estimating, and Organizing Microeconomic Data |
Source: |
-
Finding needles in haystacks : multiple-imputation record linkage using machine learning
Abowd, John M., (2022)
-
Paolo, Mariani, (2014)
-
An Empirical Total Survey Error Decomposition Using Data Combination
Meyer, Bruce D., (2019)
- More ...
-
Finding needles in haystacks : multiple-imputation record linkage using machine learning
Abowd, John M., (2021)
-
Finding needles in haystacks : multiple-imputation record linkage using machine learning
Abowd, John M., (2022)
-
Abowd, John M., (2019)
- More ...