Finite Gaussian mixture approximations to analytically intractable density Kernels
Year of publication: |
2019
|
---|---|
Authors: | Khorunzhina, Natalia ; Richard, Jean-François |
Published in: |
Computational economics. - Dordrecht [u.a.] : Springer, ISSN 0927-7099, ZDB-ID 1142021-2. - Vol. 53.2019, 3, p. 991-1017
|
Subject: | Adaptive algorithm | Density kernel | Distance measure | Finite mixture | Gaussian quadrature | Importance sampling | Stochastic volatility | Statistische Verteilung | Statistical distribution | Stochastischer Prozess | Stochastic process | Stichprobenerhebung | Sampling | Volatilität | Volatility | Schätztheorie | Estimation theory | Monte-Carlo-Simulation | Monte Carlo simulation | Optionspreistheorie | Option pricing theory | Algorithmus | Algorithm | Nichtparametrisches Verfahren | Nonparametric statistics |
-
VaR/CVaR estimation under stochastic volatility models
Han, Chuan-Hsiang, (2014)
-
High-frequency jump tests : which test should we use?
Maneesoonthorn, Worapree, (2020)
-
High-frequency jump tests : which test should we use?
Maneesoonthorn, Worapree, (2020)
- More ...
-
Finite Gaussian Mixture Approximations to Analytically Intractable Density Kernels
Khorunzhina, Natalia, (2019)
-
Essays on Structural Modeling of Life Cycle Behavior
Khorunzhina, Natalia, (2011)
-
Dynamic Stock Market Participation of Households
Khorunzhina, Natalia, (2011)
- More ...