Finite Gaussian mixture approximations to analytically intractable density Kernels
| Year of publication: |
2019
|
|---|---|
| Authors: | Khorunzhina, Natalia ; Richard, Jean-François |
| Published in: |
Computational economics. - Dordrecht [u.a.] : Springer, ISSN 0927-7099, ZDB-ID 1142021-2. - Vol. 53.2019, 3, p. 991-1017
|
| Subject: | Adaptive algorithm | Density kernel | Distance measure | Finite mixture | Gaussian quadrature | Importance sampling | Stochastic volatility | Statistische Verteilung | Statistical distribution | Stochastischer Prozess | Stochastic process | Stichprobenerhebung | Sampling | Volatilität | Volatility | Schätztheorie | Estimation theory | Monte-Carlo-Simulation | Monte Carlo simulation | Optionspreistheorie | Option pricing theory | Algorithmus | Algorithm | Nichtparametrisches Verfahren | Nonparametric statistics |
-
VaR/CVaR estimation under stochastic volatility models
Han, Chuan-Hsiang, (2014)
-
High-frequency jump tests : which test should we use?
Maneesoonthorn, Worapree, (2020)
-
High-frequency jump tests : which test should we use?
Maneesoonthorn, Worapree, (2020)
- More ...
-
Finite Gaussian Mixture Approximations to Analytically Intractable Density Kernels
Khorunzhina, Natalia, (2019)
-
Dynamic Factor Models for Multivariate Count Data : An Application to Stock-Market Trading Activity
Jung, Robert, (2008)
-
The Multinomial Multiperiod Probit Model : Identification and Efficient Estimation
Liesenfeld, Roman, (2008)
- More ...