Finite Sample Evaluation of Causal Machine Learning Methods : Guidelines for the Applied Researcher
Year of publication: |
[2021]
|
---|---|
Authors: | Naghi, Andrea ; Wirths, Christian P. |
Publisher: |
[S.l.] : SSRN |
Subject: | Künstliche Intelligenz | Artificial intelligence | Kausalanalyse | Causality analysis | Stichprobenerhebung | Sampling | Theorie | Theory |
Extent: | 1 Online-Ressource (54 p) |
---|---|
Series: | |
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments October 14, 2021 erstellt |
Other identifiers: | 10.2139/ssrn.3942461 [DOI] |
Classification: | d04 ; C01 - Econometrics ; C21 - Cross-Sectional Models; Spatial Models |
Source: | ECONIS - Online Catalogue of the ZBW |
-
The Value Added of Machine Learning to Causal Inference : Evidence from Revisited Studies
Baiardi, Anna, (2021)
-
The value added of machine learning to causal inference : evidence from revisited studies
Baiardi, Anna, (2021)
-
Finite sample evaluation of causal machine learning methods : guidelines for the applied researcher
Naghi, Andrea A., (2021)
- More ...
-
Finite sample evaluation of causal machine learning methods: Guidelines for the applied researcher
Naghi, Andrea A., (2021)
-
Robust Estimation of Probit Models with Endogeneity
Naghi, Andrea, (2021)
-
The Value Added of Machine Learning to Causal Inference : Evidence from Revisited Studies
Baiardi, Anna, (2021)
- More ...