Forecasting a Long Memory Process Subject to Structural Breaks
Year of publication: |
2013
|
---|---|
Authors: | Wang, Cindy Shin Huei |
Other Persons: | Bauwens, Luc (contributor) ; Hsiao, Cheng (contributor) |
Publisher: |
[2013]: [S.l.] : SSRN |
Subject: | Strukturbruch | Structural break | Prognoseverfahren | Forecasting model | Zeitreihenanalyse | Time series analysis | Theorie | Theory | ARMA-Modell | ARMA model | Stochastischer Prozess | Stochastic process |
Extent: | 1 Online-Ressource (37 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | In: CAFE Research Paper No. 13.01 Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments January 19, 2013 erstellt |
Other identifiers: | 10.2139/ssrn.2313227 [DOI] |
Classification: | C22 - Time-Series Models ; C53 - Forecasting and Other Model Applications |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Modeling and forecasting S&P 500 volatility : long memory, structural breaks and nonlinearity
Martens, Martin, (2004)
-
Optimal forecasts in the presence of discrete structural breaks under long memory
Mboya, Mwasi Paza, (2022)
-
Long memory and data frequency in financial markets
Caporale, Guglielmo Maria, (2017)
- More ...
-
Forecasting a long memory process subject to structural breaks
Wang, Cindy Shin Huei, (2013)
-
Real-time monitoring test for realized volatility
Wang, Cindy Shin Huei, (2013)
-
The Real Time Monitoring Test for Realized Volatility
Wang, Cindy Shin Huei, (2013)
- More ...