Forecasting airline passengers' satisfaction based on sentiments and ratings : an application of VADER and machine learning techniques
Year of publication: |
2024
|
---|---|
Authors: | Murugesan, R. ; Rekha A P ; Nitish N ; Balanathan, Raghavan |
Published in: |
Journal of air transport management : a new international journal of research, policy and practice. - Amsterdam [u.a.] : Elsevier Science, ZDB-ID 2027741-6. - Vol. 120.2024, Art.-No. 102668, p. 1-9
|
Subject: | Airline passengers' satisfaction | Sentiment analysis | Ratings | Machine learning techniques | Künstliche Intelligenz | Artificial intelligence | Kundenzufriedenheit | Customer satisfaction | Fluggesellschaft | Airline | Passagierluftverkehr | Air passenger transport | Emotion | Prognoseverfahren | Forecasting model | Dienstleistungsqualität | Service quality |
-
Identification of opinion trends using sentiment analysis of airlines passengers' reviews
Farzadnia, Siavash, (2022)
-
The impact of the COVID-19 pandemic on airlines’ passenger satisfaction
Pereira, Francisco, (2023)
-
Predicting airline passengers' loyalty using artificial neural network theory
Singh, Balgopal, (2021)
- More ...
-
Leadership dimensions for engineering project success
Murugesan, R., (2012)
-
Leadership dimensions for engineering project success
Murugesan, R., (2012)
-
Strategic leadership as contributory factor for engineering project success
Murugesan, R., (2014)
- More ...