Forecasting bitcoin volatility : exploring the potential of deep learning
| Year of publication: |
2023
|
|---|---|
| Authors: | Pratas, Tiago E. ; Ramos, Filipe R. ; Rubio, Lihki |
| Published in: |
Eurasian economic review : a journal in applied macroeconomics and finance. - Heidelberg : Springer, ISSN 2147-429X, ZDB-ID 2646817-7. - Vol. 13.2023, 2, p. 285-305
|
| Subject: | Cryptocurrencies | Bitcoin | ARCH/GARCH models | Deep learning | Forecasting | Prediction error | Virtuelle Währung | Virtual currency | Prognoseverfahren | Forecasting model | Volatilität | Volatility | Künstliche Intelligenz | Artificial intelligence | Lernprozess | Learning process | ARCH-Modell | ARCH model |
-
Forecasting returns volatility of cryptocurrency by applying various deep learning algorithms
Khan, Farman Ullah, (2023)
-
Bouteska, Ahmed, (2024)
-
Bonaccolto, Giovanni, (2025)
- More ...
-
Mapping e-commerce trends in the USA : a time series and deep learning approach
Ramos, Filipe R., (2025)
-
Forecasting volatility by using wavelet transform, ARIMA and GARCH models
Rubio, Lihki, (2023)
-
Ribeiro, Marco Ferreira, (2024)
- More ...