Forecasting carbon price using a multi-objective least squares support vector machine with mixture kernels
Year of publication: |
2022
|
---|---|
Authors: | Zhu, Bangzhu ; Ye, Shunxin ; Wang, Ping ; Chevallier, Julien ; Wei, Yi-Ming |
Published in: |
Journal of forecasting. - New York, NY : Wiley Interscience, ISSN 1099-131X, ZDB-ID 2001645-1. - Vol. 41.2022, 1, p. 100-117
|
Subject: | machine learning | particle swarm optimization | least squares support vector machine | mixture kernels | multi-objective fitness function | Mustererkennung | Pattern recognition | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Algorithmus | Algorithm | Schätztheorie | Estimation theory | Multikriterielle Entscheidungsanalyse | Multi-criteria analysis |
-
Forecasting inflection points : hybrid methods with multiscale machine learning algorithms
Chevallier, Julien, (2021)
-
Algorithms for multiclass classification and regularized regression
Burg, Gerrit Jan Johannes van den, (2018)
-
Improvement of Kriging interpolation with learning kernel in environmental variables study
Xu, Te, (2022)
- More ...
-
A multiscale analysis for carbon price drivers
Zhu, Bangzhu, (2019)
-
A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting
Zhu, Bangzhu, (2018)
-
Carbon price analysis using empirical mode decomposition
Zhu, Bangzhu, (2015)
- More ...