Forecasting compositional time series : a state space approach
Year of publication: |
April 2015
|
---|---|
Authors: | Snyder, Ralph D. ; Ord, John Keith ; Koehler, Anne B. ; McLaren, Keith Robert ; Beaumont, Adrian |
Publisher: |
Victoria : Monash University, Department of Econometrics and Business Statistics |
Subject: | Exponential smoothing | Proportions | Prediction intervals | Automobile sales | Market shares | Prognoseverfahren | Forecasting model | Zeitreihenanalyse | Time series analysis | Theorie | Theory | Zustandsraummodell | State space model | Marktanteil | Market share |
-
Forecasting compositional time series : a state space approach
Snyder, Ralph D., (2017)
-
Staying positive : challenges and solutions in using pure multiplicative ETS models
Svetunkov, Ivan, (2024)
-
iETS : state space model for intermittent demand forecasting
Svetunkov, Ivan, (2023)
- More ...
-
Forecasting compositional time series with exponential smoothing methods
Koehler, Anne B., (2010)
-
A study of outliers in the exponential smoothing approach to forecasting
Koehler, Anne B., (2012)
-
Forecasting compositional time series : a state space approach
Snyder, Ralph D., (2017)
- More ...