Forecasting digital asset return : an application of machine learning model
| Year of publication: |
2025
|
|---|---|
| Authors: | Ciciretti, Vito ; Pallotta, Alberto ; Lodh, Suman ; Senyo, Prince Kwame ; Nandy, Monomita |
| Published in: |
International journal of finance & economics : IJFE. - Chichester [u.a.] : Wiley, ISSN 1099-1158, ZDB-ID 1493204-0. - Vol. 30.2025, 3, p. 3169-3186
|
| Subject: | bitcoin | digital asset | double deep Q-learning | forecasting price | machine learning | reinforcement learning | time-series | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Lernprozess | Learning process | Virtuelle Währung | Virtual currency | Lernen | Learning | Zeitreihenanalyse | Time series analysis | Digitalisierung | Digitization | Kapitaleinkommen | Capital income | Theorie | Theory |
-
Regime switching forecasting for cryptocurrencies
Agakishiev, Ilyas, (2025)
-
Feature selection with annealing for forecasting financial time series
Pabuccu, Hakan, (2024)
-
Prediction of cryptocurrency prices by deep learning models : a case study for Bitcoin and Ethereum
Mehrdoust, Farshid, (2023)
- More ...
-
An early-warning risk signals framework to capture systematic risk in financial markets
Ciciretti, Vito, (2025)
-
Technology transfer potential in local and foreign-owned firms in emerging economies
Osabutey, Ellis L. C., (2024)
-
Zhang, Danni, (2023)
- More ...