Forecasting first-year student mobility using explainable machine learning techniques
Year of publication: |
2024
|
---|---|
Authors: | Litmeyer, Marie-Louise ; Hennemann, Stefan |
Published in: |
Review of regional research : a publication of the German-speaking section of the Regional Science Association International, Gesellschaft für Regionalforschung. - Berlin : Springer, ISSN 1613-9836, ZDB-ID 2254116-0. - Vol. 44.2024, 1, p. 119-140
|
Subject: | Gravitation Model | High School-to-University Transition | Machine Learning | Radiation Model | Spatial Mobility | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Studierende | Students | Mobilität | Mobility | Mobilkommunikation | Mobile communications |
-
Forecasting first-year student mobility using explainable machine learning techniques
Litmeyer, Marie-Louise, (2024)
-
Probabilistic forecasting of daily COVID-19 admissions using machine learning
Rostami-Tabar, Bahman, (2024)
-
Machine learning and deep learning-based students’ grade prediction
Korchi, Adil, (2023)
- More ...
-
Forecasting first-year student mobility using explainable machine learning techniques
Litmeyer, Marie-Louise, (2024)
-
Einfluss von Windenergieanlagen auf die Entwicklung des Tourismus in Hessen
Gardt, Manuel, (2018)
-
Hennemann, Stefan, (2010)
- More ...