Forecasting high-dimensional realized volatility matrices using a factor model
| Year of publication: |
2020
|
|---|---|
| Authors: | Shen, Keren ; Yao, Jianfeng ; Li, Wai Keung |
| Published in: |
Quantitative finance. - London : Taylor & Francis, ISSN 1469-7696, ZDB-ID 2027557-2. - Vol. 20.2020, 11, p. 1879-1887
|
| Subject: | Factor model | High-dimension | High-frequency | Realized covariance matrices | Wishart distribution | Volatilität | Volatility | Korrelation | Correlation | Faktorenanalyse | Factor analysis | Prognoseverfahren | Forecasting model | Zeitreihenanalyse | Time series analysis | Kapitaleinkommen | Capital income | Lineare Algebra | Linear algebra | Varianzanalyse | Analysis of variance | Schätzung | Estimation | Portfolio-Management | Portfolio selection |
-
Realized regression with asynchronous and noisy high frequency and high dimensional data
Chen, Dachuan, (2024)
-
Factor state-space models for high-dimensional realized covariance matrices of asset returns
Gribisch, Bastian, (2020)
-
Asset allocation with factor-based covariance matrices
Conlon, Thomas, (2025)
- More ...
-
Evaluation methods for portfolio management
Law, Keith K. F., (2020)
-
The generalized conditional autoregressive wishart model for multivariate realized volatility
Yu, Philip L. H., (2017)
-
Zhu, Ke, (2017)
- More ...