Forecasting hourly PM2.5 concentrations based on decomposition-ensemble-reconstruction framework incorporating deep learning algorithms
Alternative title: | Forecasting hourly PM 2.5 concentrations based on decomposition-ensemble-reconstruction framework incorporating deep learning algorithms |
---|---|
Year of publication: |
2023
|
Authors: | Cai, Peilei ; Zhang, Chengyuan ; Chai, Jian |
Published in: |
Data science and management : DSM. - [Amsterdam] : Elsevier B.V., ISSN 2666-7649, ZDB-ID 3108238-5. - Vol. 6.2023, 1, p. 46-54
|
Subject: | Decomposition-ensemble-reconstruction framework | Deep learning | PM concentration prediction | Variational mode decomposition method | Prognoseverfahren | Forecasting model | Algorithmus | Algorithm | Dekompositionsverfahren | Decomposition method | Künstliche Intelligenz | Artificial intelligence | Theorie | Theory | Unternehmenskonzentration | Market concentration | Lernprozess | Learning process | Lernen | Learning |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Notes: | Im Haupttitel ist "2.5" tiefgestellt |
Other identifiers: | 10.1016/j.dsm.2023.02.002 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Abedin, Mohammad Zoynul, (2023)
-
A novel financial forecasting approach using deep learning framework
Santur, Yunus, (2023)
-
Shadmani, Alireza, (2023)
- More ...
-
A novel BEMD-based method for forecasting tourist volume with search engine data
Tang, Ling, (2021)
-
Knowledge mapping of tourism demand forecasting research
Zhang, Chengyuan, (2020)
-
The impact of COVID-19 on hotel customer satisfaction : evidence from Beijing and Shanghai in China
Sun, Shaolong, (2022)
- More ...